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The hydrostatic pressure coeff icients for the elasti c constants of Se and Tc a re shown 
to be large and positive in contrast to the negative mode Griineisen parameters reported 
earlier for the optical vibration s. These results can be l111derstood on the basis of the idea 
that the hydrostatic pressure promotes transfer of electrons from intrachain bonding 
orbitals to interchain bonding states. This strengthens the interchain " elastic" force 
constants while simultaneously weakening the intrachain "optic" force constants. The 
g reat similarity in the Se and Te lattices suggests that their v ibrational spectra can be 
related by homology. Of the three lattice parameters describing each crystal. the intrachain 
bond ang le is nearly identical and relatively pressure insensitive in the two latti ces. There
fore , by a two-step transformation in which the cIa-ratio is first made equal by applying 
hydrostati c pressure, and secondly by properly scaling the mass and the unit cell, the 
two lattices can be made structurally identical. "Vith this transformation and the available 
pressure data all zone centre phonons st ll died in the two materials could be related by a 
universal scaling factor for the "mode" force constants. Bough estimates for the higher
order pressure coefficients can also be made. 

Es wird gezeigt, daB die hydl'ostatischen Druckkoefiizienten fiir die elastischen Konstan
ten von Se und Te groG und positiv sind, im Gcgensatz zu clen negativen Grilneisenpal'u
metern, die fri:iher fill' die optischen Schwingungen beobachtct wurden. Diese Ergebnisse 
lassen sich auf del' Gruncllage del' Vorstellung verstehen, daB del' hydrostatische Druck den 
Transfer von Elektronen aus bindenden "Intrachain"-Orbitalen in bindende "Interchain" 
Zllstande fiirdel't. Dies verstarkt die "elastischen" Interchain-Kraftkonstanten, wahl'end 
sich gleichzeitig die "optischen" Intrachain-Kraftkonstanten abschwachen. Die groBe 
.A.hnlichkeit del' Se- und Te-Gitter legt es nahe, daB sich ih1'e Schwingungsspektren durch 
Homologie verkniipfen lassen. Von den drei Gitterpararnetern , die jeden Krista]] be
sch1'eiben, ist del' Intrachain-Bindungswinkel nahezu identi sch und relativ druckun
empfindli ch in bciden Gittern. Deshalb lassen sich die beiden Gitter strllktul'ell identisch 
rnachen durch e ine Zwei-Stufen-Transformation, bei del' erstens das cla-Verhaltnis durch 
Anlegen des hydl'ostatischen Drucks gleich groB gemacht wird und zweitens Masse lind 
Einheitszelle skaliert werden_ :Mit diesel' Transformation und den bekannten Druck
werten kiinnen a ile untersnchten Phononen des ZonenzentFums in den beiden :M:ateriaJien 
dUTch einen nniversellen Eichfaktor fiir die " Moden" -Kraftkonstanten verkniipft werden. 
Es laBt sich allch eine Abschatzung fliT die Dl'lIckkocffizienten hiiherer Ordnung durch
fiihren. 

1) Present address: Electronics Research Laboratory, The University of Trondheim, 
Trondheim, Norway. 

2) Present address: 1. Physikalisches Institut del' RWTH Aachen, 51 Aachen, FRG, 



556 T. A. FJELDL y and "N. RICHTER 

1. Introduction 

We have measured the hydrostatic pressure dependence of elastic constants 
in Se and Te and found these to be large (up to 5% /kbar) and positive. An earlier 
report on the Raman frequencies in the same materials showed these to have 
negative mode Griineisen parameters [1]. 

These results can be understood in terms of the nature of the bonding as 
described by von Hippel [2] , Grosse [3] , Gspan et al. [4] , and Martin and Lu
covsky [5, 6]. They discuss how both the progression towards heavier elements 
as well as the application of hydrostatic pressure promotes transfer of electrons 
from the intrachain bonding orbitals to bonding states between the chains. 

It is often useful to think of the Se or Te lattice as composed of weakly 
interacting helical chains along the trigonal axis [2, 3]. This structure is an 
intermediate step in the progression from molecular sulfur to simple cubic 
metallic polonium; it is a distortion from simple cubic which satisfies the diva
lent nature of the group VIb atoms. 

With hydrosta,tic pressure the relatively stiff chains in Se and Te deform little 
while the weak interchain forces result in a denser packing of the chains. This 
causes, for instance, the anomalous linear expansion of these crystals along the 
trigonal axis with hydrostatic pressure [7, 8]. The denser packing of the chains 
and the resulti.ng transfer of valence charge from intra- to interchain orbitals 
cause the interchain force constants to stiffen rapidly at the expense of the intra
chain force constants. This is what is reflected in the pressure behaviour of the 
long-wavelength acoustical and optical modes, which are dominated by the 
inter- and intrachain forces, respectively. The decrease in intrachain constants 
has been observed in previous experiments [1]. Here the inter chain bonding is 
observed directly in the elastic constants under pressure. 

A simple force constant expression can be derived for the elastic constant 
combination Ou + 0 12 , which corresponds to a radial deformation in the basal 
plane, in terms of the single force constant KR between nearest neighbour atoms 
on different chains. Likewise, a simple expression can be obtained for 0 33 which 
reflects an axial deformation along the chains. The latter involves, in addition 
to K R , also a force constant Ko for the intrachain bond angle. For a more de
tailed discussion of this we refer to an earlier note on the subject [9]. 

The major part of this paper is devoted to a study of the homology between 
Se and Te, made possible by the pressure data now available. Earlier studies of 
homology between series of elements were done on the group IV b diamond 
type crystals, and it proved quite successful in relating the vibrational spectra 
of the diamond-silicon-germanium-Ol-tin series [10 to 12]. This was facilitated 
by the simple structure possessed by these lattices. Only a simple normalization, 
i .e., scaling of the mass, the force constant, and the lattice constant resulted in 
a universal set of dispersion curves for these elements. The direct result of such 
an exercise, besides demonstrating the large systematic similarities in a group 
of elements, is to find trends in the interatomic force constants for ultimate 
comparison with theory. 

In the lower symmetry lattices complications arise as a consequence of 
additional degrees of freedom in the lattice parameters. Thus, in the Se-Te 
system, we have two degrees of freedom in addition to the simple scaling. 
Fortunately, one of these, the intra chain bond angle, is very close in Se and Te; 
and it does not seem to have either a signifi cantly large or different pressure 
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dependence for the two latti ces [13]. Thi s, therefore, leaves only one extra degree 
of freedom, and we have arbitrari ly chosen to consider the cia-ratio, which is 
different in the two materials: we can produce (c ja)A of spec ies A by pressurizing 
spec ies B and vice-versa. Thu. , we have a two-step transformation which con
sists of subjecting B to a pressure PI' until (c l a)n(Pn) = (cla)A(O), and then 
secondly exeeuting the mass and unit cell scaling. When this transformation is 
performed on the lattice modes of species B , the comparison with species A gives 
valuable information about the corresponding force constants in the two 
materials. Our aim is, with the present data on zone centre phonons, to demon
stratc the possible existence of a homological relationship between t he two ele
ments. Of course, the transformation can be carried out both ways, either 
A -+ B or B -r A, and we shall see that this leads to in teresting conclusions about 
the reciprocity of the scaling of the force constants. In addition, a simplified 
approach allows us also to estimate magnitudes for higher order pressure 
coefficients for the lattice modes. 

2. Experill1cn tal 

The various sound velocities and their pressure dependence were measured 
with a standard ultrasoni c pulse-echo overlap technique [14, 15]. The experi
mental set-up was built around a Matec 6000 rf pulse generator. The frequencies 
used were 20 to 30 MHz; and the quartz transducers were bonded to the samples 
with Nonaq stop-cock grease or solidified phenylsalycilate ("salol" ). The latter 
proved a good and reli able bond that normally did not break when applying 
pressure. Moreover, in check runs with grease bonds, no observable distortions 
that could be attributed to the use of solid bonds were detected in the data. 

The single crystal samples of Se and Te were prepared as plates ranging in 
thickness from 2.5 to 5 mm with faces perpendicular to the X-axis (only Tc) 
and the Y- and Z-axis3 ) (both Se and Te). The samples were X-ray oriented to 
±1°. The surfaces were carefully lapped in a lapping jig with a light-weight 
(hollow) aluminium piston. 

'The hydrostat ic pressure was achieved in a steel bomb furnished with a co
axial electri cal feed-tm·ough. Silicone oil was used as the pressLu'e transmitting 
fluid, and the system had a capability of 7 kba1'. A standard manganin resistive 
cell . erved as the pressure gauge. 

3. Results 

The measured pressure dependence of effective elastic constants are shown 
in Fig. 1 and 2, not corrccted for volume and length changes. These corrections 
have to be applied as the pulse-echo method Ip.easures only the transit time of 
a pulse through the ample. For a determination of velocities as a function of 
pressure one therefore needs the dependence of the sample length on pressure, 
which is determined through the linear compressibilities . To calculate the elastic 
constants one has in addition then to correct for the density changes, given by 
the volume compressibility. The compressibilities can be calculated from a com
plete set of zero pressure elastic constants [16]. The elastic constant C13' which 
can only be determined by measurements with wave-vector directions between 

3) The Z·direction corresponds to the trigonal axis; X is the twofold axi (in the basal 
plane) and Y is perpendicular to both X and Z (i. e., Y is also in thc basal plane). 
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the c-axis and the basal plane, was not measured here. We therefore took the 
compressibilities from the results of X-ray measurements under hydrostatic 
pressure, made by various authors. For Te the compressibilities quoted [7] are 
compatible with the value of 013 given by Malgrange et al. [17]. For Se large 
inconsistencies exist between the elastic constants [18, 19], linear compressi
bilities [8, 22], and volume compressibilities [20, 21]. This is probably due to 
the fact that none of these compressibility measurements has been performed on 
single crystalline material and in a true hydrostatic environment, conditions 
necessary for such an anisotropic and soft material like Se. Therefore the cor
rections performed on the Se data are somewhat uncertain. The corrected 
logarithmic pressure derivatives for the effective elastic constants are shown in 
Table 1. From the six independent hydrostatic pressure coefficients, we have 
information on five in both Se and Te; with three redundancies in the case of 
Te for checks on internal consistency. The sixth coefficient, involving the elastic 
constant 013, was not determined here. We also obtained absolute values of the 
elastic constants. and these are compared with published data in Table 1. Our 
data on Te are in excellent agreement with those of Malgrange et al. [17]. Note 
that the effective "mode" elastic constants listed for the X- and Y-direction 
by Malgrange et al. were computed from their list of elastic constants using the 
expressions 

O2 ,3 = -} (066 + 044 ) ± (+ (066 - 044 )2 + Oi.)1/2 

for the two mixed transverse modes in the X-direction and 

0 4 , 5 = -} (Ou + 044 ) + (+ (On - 044 )2 + Oi.)1/2 

(1) 

(2) 
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Table 1 

Effective elastic constants and their logarithmic pressure derivatives for Se and Te 

C (1011 dyn /cm 2 ) 

~ dCd) 
C dp 

mocle") 
(10-2 kbar-1 ) 

Te Se 

I ref. [17] this work I ref . [19] I ref. [18] 
Te Se 

this work 

L(Z), C33 7.05 7.22 8.20 8.02 7.41 1.79 2.1 
T(Z), C44 3.19 3.12 1.82 1.83 1.49 2.47 5.1 
L(X), Cn 3.30 3.27 1.91 b) 1.87 3.78 5.2e) 
FT(X), C2 3.66 3.72 2.12b) 1.80 2.77 5.1 e) 

ST(X), C3 0.60 0.60 0.52 b ) 0.24 2.74 3.7e) 
QL(Y). C4 4.40 4.42 2.49 2.33 3.30 5.2 
QT(Y), CS 2.00 1.95 1.24 1.03 3.01 5.0 
T(Y), C66 1.25 1.21 0.82 0.55 3.30 4.2 

IC14 1 1.19 b) 1.24 0.62b ) 0.62 
C13 2.31 C) 2.49 2.3C) 2.60 

a) Designations : L longitudinal , T transverse, FT fa·t transverse, ST slow transverse, 
QL quasi-longitudinal, QT quasi-transverse. (X). (Y), (Z) direction of phase velocity; C2 

to Cs are defined in equations (1) and (2). 
b) Calculated from equations (1) and (2) . 
C) Calculated from the volume cornpressibili ties: Te: 0.52 X 10-11 cm2/dyn [7]; Se: 

0.94 X lO- ll crn'/dyn [9). 1 da 
d) The linear compressibilities used are (in units of 10-3 kbar- 1): - - -d = 2.8 (Te). 

a p 
5.7 (Se); - ~ ~ = -0.4 (Te), - 2.0 (Se) [7 to 9). Due to the re lative large uncertainty 

c clp 
in the compressibilities of Se the pressure derivatives in this column can have an lUlcer
tainty of as much as 25% for C33 ; but typica lly less than 10% for the basal plane mocles. 

e) Calculated from equations (3) to (5). 

for the quasi-longitudinal (+) and quasi-transverse (-) modes in the Y -direc
tion. (Note that the relationship given in reference [17] for 0 20 3 is obviously in 
error.) With the present elastic constants and the volume compressibility by 
Bridgeman [7] (0.52 X 10-11 cm2Jdyn), we obtain a value for 013 as shown in 
Table 1. 

For Se there exists in the literature a complete set of elastic constants by 
Mort [18] , and measurement only along the trigonal axis (i.e ., 0 33 and 044 ) by 
Vedam et al. [19]. OID' data for the latter are in very good agreement with those 
by Vedam et al. but Mort's values are lower by 10 to 20 % . This is typical for 
his data when compared with the present ones, also for the X- and Y-direction. 
Om agreement with Vedam et al. for t he Z-direction in Se, and the good agree
ment with Malgrange et al. for Te together with the fact that we performed all 
OID' measurements consistently, without variation in technique, lead us to believe 
that our data for the elastic constants in Se along with t hose of Vedam et a l. 
are the more accID'ate. Using the present data, and a volume compressibility of 
0.94 X 10-11 cm2Jdyn (see [7] and the discussion in Section 4) we obtain an 
estimate for 013 (see Table 1) in Se. 
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Table 2 

Consistency checks on the elastic constants and on their pressure derivatives in Te (see 
equations (3) to (5) in the main text). The elastic constants have the units (Ion dynjcm2) 

= 4.26 I K2 + K s 
= 4.44 I K44 + K66 

-0-
4
-+--0-

5
------------------=--6-.4-0- 1 K4 + K, 

On + 044 = 6.49 Kn + Ku 
--------------------------- , 

= U.8 
= 12.0 

= 20.5 
= 20.4 

= 1.90 [(02-03 ) (K2 - K a) - (04-0,) (K4-K,)]l /2 
= 2.4 

[(044-060 ) (K44-Kcs) - (044-011) (K44-Kn )Jl /2 
= 2.6 

The three redundancies in measurement of the absolute values and of the 
pressure coeffi cients for the elastic constants in Te allow us to perform three 
checks on internal consistency for both. Using t he notation Ou. and K",= (d jdp)Ou. 
for t he absolute values and the pres ure coeffi cients of the elastic constants 
respectively, we have the following relationships: 

044 + On = 04. + 0 5 , K44 + Ku = K4 + Ks : 

[(044 - 0 66 )2 - (044 - Ou)2]1/2 -.:. [(02 - 03)2 - (04 - OS)2]1/2 } 

[(044 - 066) (K44 - K 66 ) - (044 - Ou) (K44 - KU)]1/2 = 
= [(02 - 03) (K2 - K 3) - (04 - Os) (K4 - Ks)]1/2 . 

(3) 

(4) 

(5) 

The two-digit subscripts reflect t he conventional notation, while 0", (0: = 
= 2, ... , 5) are defined in (1) and (2) . The square root signs in (5) are retained 
to preserve consistency with (3) and (4) in evaluating the errors. 

Table 2 shows that the internal consistency in our mea urements is quite 
satisfactory, with a maximum error of 4% in t he elastic constants and in their 
pressure derivatives. This is also in agreement with the maximum uncertainty 
expected in our experiments. The larger relative discrepancy in the lower of 
(5) is merely due to the near cancellation of large numbers inside the square 
brackets. A similar uncertainty is also expected for the experimental data on 
Se. However, the lack of reliable values for the linear compressibilities introduces 
relatively large uncertainties in some of the logarithmic pressure derivatives of 
the elastic constants (see footnote in Table 1). 

4. Atomic Force Constants and the Pressure Dependence 
of the Lattice Vibrations 

As mentioned earlier , the quaHtative features of the pressure dependence of 
the long-wavelength optical and acoustical vibrations finds a natural explana
t ion in the ideas put forward, in particular by Martin and Lucovsky [5, 6]. The 
optical modes tend to soften and acoustical modes stiffen due to the weakening 
of the strong intra chain covalent bonds owing to transfer of electronic charge 
to the weak interchain bonds as the chains are packed closer together. This can 
be seen in the larger context of a progression from molecular sulfur to metallic 
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simple cubic polonium, where Te and Se are viewed as points in a continuous 
distortion from the simple cubic lattice . This distortion is described in terms of 
the ratio between the nearest distance between atoms on different chains R to 
the nearest neighbour distance T within a chain [2, 5, 6]. In this picture, it 
becomes quite clear that with the progression towards heavier atoms (i.e., with 
decreasing R jf) , the interchain forces increase at the expense of the intrachain 
forces , for ultimately to become equivalent in the uase of imple cubic polonium. 
However, the distortion parameter R j1' also decreases in Se and Te with hydro
static pressure, allowing the pressure data obtained here and earlier to find 
their natural explanation within this general picture. Quantitatively, these 
pressure data permit investigation of the changes in the various force constants 
with small reductions in the distortion. As an example, we have shown elsewhere 
[9] that the elastic constant combination Cll + C12 ' which describes a radial 
distortion in the basal plane of the trigonal crystal can, to a good approximation, 
be related to the single force constant ](R between nearest neighbour atoms on 
different chains. The assumption made is that the nearest neighbour distance 
within the chain T is rigid, and that we have only central forces between the 
chains. This expression is 

2 1/3 (a)2 ( 3)2 
Cll + C12 = - c- R 1 - 2 x ]( R , (G) 

where x (0 .2254 for Se and 0.2633 for Te) is the internal position parameter 
(xa is the chain radius). Using a simple power law expression](R rv RIX we find 
that owing to the rapid increase in Cll + C12 with pressure, the power (X must 
be about - 14 for Se and -20 for Te! 

With similar assumptions, but including an intrachain bond bending force 
constant Ko we arrive at the following expression for C33 : 

(7) 

where f) (103 .06° for Se and 103.23° for Te) is the intrachain bond angle. With 
the above result for Kn we find the values for the logarithmic derivatives 
(a jKol (dKo jda) to be very small for Se and about four for Te. 

This demonstrates how the typical interchain force constant ](R increases 
drastically with pressure. The intrachain bond bending force constant ](0 clearly 
decreases in Te with pressure in agreement with the rough estimates given in 
[1]. For Se a good evaluation o(this quantity was difficult owing to large incon
sistenc ies between the elastic constants, linear compressibilities, and volume 
compressibilities [8 , 18,20 to 22]. Clearly accurate compressibility measure
ments on single crystalline samples in a true hydrostatic environment are needed 
for such an anisotropic material as Se. The compressibilities used are given in 
Table 1 (footnote d). The failure to demonstrate a definite decrease in ]{o with 
pressure for Se can partly be ascribed to the uncertainty in the compressibilities. 
used; but, more likely, a more sophisticated force constant model is needed to 
express properly the elastic constant C33• However, the experiments show that 
the elastic constant C33 , which contains the highest admixture of intrachain 
force constants, has the smallest increase with pressure of all the elastic con
stants measured (see Fig. 1 and 2 and Table 1), lending further evidence to the 
general ideas stated earlier. 
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5. Study of the Homology between Se and Te 

We now consider the possibility of relating the vibrational spectra in Se and 
Te in a fashion similar to the one used by Kucher [10], Mostoller [ll], and Nilson 
and Nelin [12] for the group IVb elements. 

As mentioned earlier, only a simple scaling of mass, force constants, and 
lattice parameter suffices for the higher symmetry elements of the diamond 
type. It was further agreed that of the two extra parameters defining the trigonal 
Se (Te) lattice, only the difference in cia-ratio was of significance, and that tIlis 
could be controlled by hydrostatic pressure. 

We shall now consider in detail how the transformations Se --+ Te and Te --+ Se 
are performed. The cia-ratios in Se and Te are 1.14 and 1.33, respectively. The 
pressure dependence of cia has been measured by Vereshagin et al. [8] for Se 
and by Jamieson and McWhan [23] for Te. Their results show that to perform 
the transformation Se --+ Te, i.e., to make (cia) e(PSe) = (clahe(O) we arrive 
at the positi,ve pressure PSe ~ 40 kbar. Likewise, for the transformation Te --+ Se, 
we find the negative pressure PTe = -35 kbar. To obtain these values the 
pressure dependence of cia and a were fitted with parabolas. Tills was necessary 
in order to account for the nonlinearity in these quantities within the pressure 
range of interest. To make the fits we chose three representative points from 
each of the experimental data sets. -These are shown in Table 3. Owing to the 

Table 3 

Data used to make parabolic fits to the dependence of cIa and 
a on pressure in Se and Te. The lowest row for each element (A) 
shows the pressure necessary to make (cla)A(PA) = (cla)B(O), 

where B is the other element 

Se Te 

p cIa a p cIa a 
(khar) (A) (khar) (A) 

0 1.135 4.366 0 1.33 4.474 
7.5 1.172 4.217 22.5 1.40 4.276 

15.0 1.209 4.114 35.8 1.423 4.218 
40 1.33 3.824 - 35 1.135 5.029 

small pressure range of reference [8], which seems the most reliable for Se, the 
values obtained for Se are somewhat uncertain (±5 kbar for PSe). 

The last step in the transfOI;mation is to scale the pressurized materials by 
the mass ratio , and by the single lattice constant a (or c). 

We now apply this transformation to the lattice vibrations, and consider first 
the long-wavelength optical modes. Thus, for equivalent phonons in the two 
lattices A and B we arrive at the following relationship: 

(8) 

where 
(9) 
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Here PB represents the pressure needed to fulfil the condition (c/a)B(PB) = 
= (c/a)A(O) and is given above for Te and Se. MB and MA are the respective 
masses for the atoms A and B. SB-->A is the ratio of the equivalent zero-pressure 
force constant KA(O) in the material A and that of material B KB(PB) under 
pressure PB' i.e. SB ..... A = KA(O) /KB(Pn)· We note that the scaling of the unit 
cell does not enter into (8) for the optical modes due to their lack of dispersion 
at long wavelengths. The experimental Raman frequencies and their pressure 
coefficients are listed in Table 4. The long-wavelength acoustical modes are 
most conveniently discussed in terms of the ultrasonic velocities. As a conse-

Table 4 

Raman modes: w(O) frequencies under atmospheric pressure; k1 first-order pressure coeffi
cient of w2 (equation (9)); 8i mode force constant ratios obtained from the transformations 
Se --+ Te and Te --+ Se using first-order expansion in pressure (81 ) and second-order expansion 
(82 ), kIe= k~e= k2 is the approximation used in the second-order expansion (see equation (9)) 

8 1 = KTe(0) /K se(40) or KTe( - 35)/Ksc(0) 

w(O) (em-I) k1 (cm-2/kbar) 
8 1 = 8 1 = 

8 2 = k. = 
mode =8Se ..... Tc= = kje = k~ e 

Te*) I Se*) Te*) I Se*) = 8Se ..... Te = 8i: ..... se =8i~-->;;;e (cm-2/kbar2) 

A, 121.0 238.6 -218 - 305 0.53 0.63 0.57 - 1.9 
E" 141.4 235.8 - 139 - 90 0.62 0.72 0.66 - 1.8 
E ' 92.8 148.6 - 13 - 21 0.66 0.66 0.66 -0.1 

*) Values obtained from [1]. 

quence of the linear dispersion in these we obtain for the transformation B -+ A 

(10) 

where 
(11) 

l(p) represents either of the lattice parameters a or c at the pressure shown in 
the parenthesis. The presence of l(p) reflects the linear dispersion in the acoustical 
modes in the ultrasonic region. The experimental sound velocities V o and the 
pressure coefficients kl are listed in Table 5. 

As mentioned, the transformation equations (8), (9) and (10), (11) can be 
carried out either as Se -+ Te or Te -+ Se. However, to claim a homological 
relationship between the vibrational modes in Se and Te for each of these trans
formations we must require that the force constant ratio SB ..... A must be the 
same for all modes in the two species. Here we only consider zone centre modes; 
however, these involve a number of inter- and intrachain force constants, and 
should therefore serve as a good testing ground for the idea. We further expect 
some degree of reciprocity in the two transformations Se -+ Te and Te -+ Se in 
the sense that SB ..... A = SA::"n. For a sim]Jle representation of force constants by 
one-term power laws in the lattice parameter a and 0, it can be shown (Appendix 
A) that this indeed seems to be the case. This point will, however, be further 
studied in the course of the discussion of the experimental data on the individual 
modes. 

37 physica (b) 72/2 
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Table 5 
Ultrasonic waves: Vo sound velocities under atmospheric pressure; kl first-order pressure 
coefficients of v2 (equation (11)); 8 i ultrasonic force constant ratios obtained from the 
transformations Se -> Te and Te -> Se. The first-order pressure expansion (81 ) is only appli
cable for Se -> Te, and for the q II Z-direction for Te -> Se (see text). Again, the approx-

imation k~e = k~e = k2 is used in the second-order expansion (82) 

Vo (105 cm/s) kl(1010cm2/s2 kbar) 
81 = 82 = k2 = 

mode*) 
81 = 

= 8 e-+Te= = kie= k2
e 

= 8Se-+ Te ,= 8T"i ..... se 
= 8ii ..... se 

(106 cm2/ 
Te e Te Se S2 kbar2) 

L(Z) 3,36 
1
4.14 0.143 1 0.194 0.54 0.44 0,52 8.7 

T(Z) 2.26 1.95 0,100 0.157 0.61 0,51 0,61 2.0 
L(X) 2.30 2.00**) 0.172 0,169 **) 0.59 0.46 18.5 
FT(X) 2.42 2.10 **) 0.132 0.182 **) 0.61 0,55 6.5 
ST(X) 0.98 1.05 **) 0.021 0.030**) 0.50 0.46 1.6 
QL(Y) 2.66 2,28 0.197 0.221 0.61 0,51 16.5 
QT(Y) 1.79 1.61 0.080 0.105 0,57 0.50 5.5 
T(Y) 1.42 1.31 0.056 0.056 0.61 0.50 5.4 

*) The symbols in this column are explained in Table 1. 
**) These values are calculated from the results for the Z- and Y-directions. 

It is clear from the magnitude of the pressures needed for the transformations 
that one cannot, in general, expect a simple linear behaviour in the squared 

~~ 
lattice frequencies over such pressure ranges. This can be seen from the ex- ~ 
perimental information on the lattice parameters (and the cfa-ratio) versus !, 
pressure. As will be evident this poses certain problems, particularly in the dis- ~ 
cussion of the acoustical modes. However, with due consideration to this diffi- I' 
culty, we shall now proceed to evaluate our data within the framework of the ' 
ideas presented here. 

6. Discussion 

6.1 D 'iscussion of the optical modes 

The force constant ratio 8 = 8 B -+A of (8) is obtained from pressure expansion ~ 
of w 2(P) as shown in (9). Only the first-order expansion coefficient k1 is known 
exp erimentally ; and with this linear approximation we obtain the values for L 
8 1 shown in Table 4 for the two independent transformations Se ~ Te and 
Te ~ Se. We have used the notation 81 = SSe-+Te and 81 = ST~-+Se for the two 
transformations, r espectively. We note that the agreement between the two 
values is in each case quite good. This shows (i) that for the optical modes the 
linear approximation is quite reasonable for w 2 versus pressure, and (ii) that 
the reciprocity condition 8 B-+A = 8.A::"B is a quite reasonable one. The order 
of magnitude of the nonlinearity (i.e., k2 ) in the pressure dependence of w2 can 
be estimated by making the rough approximation that kIe = k~e = k2• Then, 
the two transformation relationships can be solved simultaneously for k2 and 8 
(now labelled 8 2 = 8 B-+ A = 8.A::"B), giving the values shown also in Table 4. 
We note that 8 2 is intermediate between the two independent estimates of 8 1 , 

Further, we see that the coeffi cients k2 are indeed small; predicting a very slight 
deviation from linearity in w; over all pressure ranges of interest here. The sign 
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of k2' however, indicates that the second-order term tends to accelerate the 
softening in w2 with pressure. 

vVe find t hat the magnitude of the force constant ratios 8 is quite similar for 
the three optical modes considered and in agreement with the requirement for 
a homological relationship to exist. The strong decrease of the force constants 
in progressing from Se to Te, reflected by the average value of 8 = 0.63 + 0.05 
is also noteworthy. 

From the fact that the optical phonons soften lightly when applying pressure, 
we already know KSe(40) < KSe(O). The small value obtained for 8 therefore 
demonstrates the weakening of the intrachain forces with the progression from 
the lighter (Se) to heavier (Te) element. 

6.2 Discussion of the acol(stical "wcles 

In calculating the force constant ratios for the long-wavelength acoustical 
modes we use the equations (10) and (11). Again , owing to the limited pressure 
range available in t he present experiments we only have the linear part in the 
pressure expansion of v2 • However, due to the remarkably large and positive 
pressure coefficients found here, the transformation Te -+ Se cannot always 
be performed: a linear extrapolation to - 35 kbar makes v2 negative for at least 
one of the modes in Te. This is, of course, no problem for the transformation 
Se -+ Te. The difficulty in Te -+ Se most likely arises from omission of higher
order pressure effects, which seem to be of particular importance for the long
wavelength acoustical modes. These modes , and especially those with phase 
velocities in the basal plane, are dominated by the interchain force constants. 
As discussed previously, and demonstrated in the present experiments, these 
force constants stiffen very rapidly with pressure. A certain nonlinearity in the 
pressure behaviour of these modes should be expected from the foregoing dis
cussion of the pressure dependence of Lhe force constants (see Section 4 a nd 
also [9]). For the velocities corresponding to wave propagation in the Z-direc
tion, for which the linear Te -+ Se transformation could be performed, we 
find reasonable correspondence between the two first-order estimates of the 
force constant ratios 81 (see Table 5) , again indicating the reciprocity in 8 for 
the two transformations. Assuming that we always can use the condition 8 = 
= S2 = 8ll~A = SA~B' we can again expand v2 to second order in pressure 
with Lhe approximation k2 = k}'c = k~e; and find simultaneous olutions for S2 
and k2 • As for the optical modes, we expect S2 to be a best average estimate of 
the force constant ratio S. 

From the data in Table 5 we make the following observations: (i) The sign 
of the predicted second order pressure coefficient k2 in v2 is always positive, i.e., 
t he stiffen ing of the acoustical modes is accelerated by the inclusion of the 
second-order pressure term. We recall that for the optical frequencies the soften
ing was found to accelerate. These findings are consistent with the pressure 
dependence of the respective force constants as discussed in Section 4. (ii) The 
values of 8 2 for all the acoustical modes considered are quite similar, about 
0.52 + 0.09. This agrees quite well with the value range found for S2 in the 
optical modes (Table 4). This is a particularly important result because it shows 
t hat the vibrational modes in Se(psc) and Te(O) or equivalently in Se(O) and 
Te(pTe) can be related to each other by a single universal scaling factor! We 
recall that this is a necessary condition for a homological relationship to exist 
between the vibrations in the two species (via their respective pressure be-
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baviours). But again, although this study covers only a limited set of phonons 
at the zone centre, a wide range of atomic inter- and intrachain force constants 
are nonetheless involved. To complete the study, therefore, one needs informa
tion about the pressure behaviour of additional phonons, for instance, at the 
zone edge; an experimental undertaking that most probably will have to involve 
neutron spectroscopy. 

In the diamond type materials the mode force constant ratio is given by [12]: 
SB -+ A = at/ai = V B/V A' where a and V are lattice constant and volume of 
the unit cell for materials A and B, respectively. Calculating now this volume 
ratio for A = Te(O) and B = Se(40) we obtain the value SB-+A = 0.624. Thi 
number is quite close to the values listed for S in Tables 4 and 5. It demonstrates 
that the force constants in this case seem to be also mainly" governed by a simple 
1/V behaviour as was found in the diamond family [12]. 

Finally, in Fig. 3 and 4, we present a comparison of the cia-dependence of 
some optical and acoustical modes in Se and Te, based on the various pressure 
dependences discussed earlier. For clarity the curves of w2 and v2 have been 
scaled by the individual force constant ratios 8 (= 82) as given in Tables 4 and 5. 
This makes the end points of the corresponding Se and Te curves coincide, per 
definition. For the optical modes the largest mismatch between the Se and Te 
curves is about 4% in the case of wil' The mismatch for the acoustical modes 
is 5% for V~3' and as much as 20% for V~l + V~2' The latter, corresponding to 
a radial compression in the basal plane, also has the most "anomalous" force 
constant ratio 8 (i.e. the largest deviation from the average value of 8). This 
shows therefore that of the vibrational modes investigated, this particular mode 
has the poorest compliance with the scaling laws of the Se-Te homology. 

7. Conclusion 

We have presented a study of the pressure coefficients of various zone 
centre vibrational modes in Se and Te. \ 
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The experimental results show that the optical modes, which are dominated 
by the intrachain force constants, soften with hydrostatic pressure. In contrast, 
the long-wavelength acoustical phonons, which mainly probe the interchain 
force constants, stiffen rapidly. The. e observations are in general agreement 
with the ideas of Martin and Lucovsky [5, 6] and Gspan et al. [4] on the nature of 
the Se- Te system. They predict a transfer of valence charge from bonding orbitals 
wiLilin the chains to bonding states between the chains, both with increasing 
pressure and with progression towards heavier elements in the group VIb of the 
Periodic Table. We would like to note that a similar behaviour should be ex
pected for the group Vb elements, where the lattices possess strong covalent 
bonding within layers and weaker interactions between layers. A study of these 
materials will be published elsewhere. 

With the present pressure data we have studied the homology between Se and 
Tc. We have demonstrated that equivalent optical and acoustical modes in the 
two materials can be related to each ot,her by a simple transformation involving 
the mode pressure dependences. The ratio of effective force constants in the two 
materials with one subjected to a hydrostatic pressure such that their cia-ratios 
are identical, has been shown to be approximately equal for most of the zone 
centre optical and acoustical modes. This indicates that a homological rela
tionship indeed exists between trigonal Se and Te via their respective pressure 
dependences. We suggest that further experiments on the pressure dependence 
of zone edge and other phonons should be performed to complete this study. 

It was also shown that a high degree of reciprocity exists between the force 
constants ratios obtained in the independent transformation Se ~ Te and 
Te ---+ Se. This allowed us to predict rough estimates of second-order pressure 
coefficients (averages between Se and Te) for the zone centre modes considered. 
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Appendix A 

Assume that the force constant K for a specific mode can be written as 
a one-term power law in the lattice parameters a and c with exponents x and y: 

Before transformation: 

After transformation: 

KTe(O) = AC¥e(O) a~,c(O) , 

KSe(O) = Bcsc (O) a~e(O) . 

KTc(PTe) = Acie(PTe) a~e (PTe ) , 

Kse(P 'e) = Bcse(Pse) a~e(P8e) . 

This gives the force constant ratios 8 Te--> e and 8 Se-->TC 

8 Te -+Se = KTe(O) = A ( CTe(O) )'" ( a1'e(O) )Y = A ( aTe(O) )"'+Y 
K se (l)se) B CSc(PSe) aSe(P8e) B a e(1)8e) , 

8 _ KSe(O) _ B (cse(O) )'" ( a8e(0) )Y _ B ( ase(O) )x+Y 
Se--71'c - K Te (l)Te) - A C1'e(PTe) a1'e(P1'c) - A aTe (PTe) 
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. Note that the condition (cja)B(PB) = (cja)A(O) for the transformation has been 
used to derive the final expressions. 

F inally, we arrive at the following condition, using the experimental (and 
extrapolated) values for the lattice parameter a with and without pressure: 

_ ( ase(O) aTe(O) )"'+11 _ "'+11 
STe-+ eSSe-+Te - ase(40) aTe( -35) - (0.99) • 

The value in the paranthesis is uncertain to a few per cent due to lack of ex
perimental data. It can therefore be concluded that the reciprocity condition 
SAB = SB~'" appears to be fulfilled for this case. 
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